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ABSTRACT 
The objective of this research is to design a decision-support tool for identifying 

biorefinery locations that ensure a cost-efficient and reliable supply chain. We built 

mathematical models which take into consideration the benefits (such as, accessibility 

to different modes of transportation), and risks associated with locating a refinery near 

an intermodal facility. These mathematical models capture the impact of facility 

disruptions on biorefinery location and supply chain design. A visualization interface is 

developed and connected to the mathematical models. This web-based interface 

enables decision-makers to input the practical data related to the location problems and 

display chosen biorefinery locations after calculation of mathematical models. 

The outcomes of this research are in compliance with the mission of the Intermodal 

Planning Division of MDOT to promote and support intermodal transportation by 

providing technical assistance which aims to improve and increase the usability of 

existing intermodal facilities. Through the decision-support tool, we will be able to 

identify under what conditions locating a biofuel plant near an intermodal facility is 

advisable; and what are the benefits/costs of such a decision. These results can be used 

to encourage biofuel plants to use intermodal facilities/transportation and make their 

investments accordingly. 
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Introduction 
The U.S. biofuel industry is expanding at a fast rate. The production of bio-ethanol in the 

U.S. has dramatically increased from 1.15 billion gallons in 2000 to 10.01 billion gallons 

in 2011 [76], and is projected to reach 11.67 billion gallons in 2020 [76]. Such an 

increase in bioethanol production mandates substantial expansion of existing biofuel 

supply chain infrastructure. The efficiency and reliability of a biofuel supply chain will be 

determined by the performance of an integrated biofuel production and transportation 

system that not only operates well under normal condition but also hedge against risks 

when a disruption occurs. 

Biomass needs to be transported from a field to a biorefinery at a minimal cost. This 

requires a lean logistics network that efficiently connects origin fields and destination 

refineries with proper transportation modes. The biomass feedstock used for 

production of the first generation biofuels (corn- and soybean-based) is bulky, non-

flowable and as a consequence difficult to load on a truck. This yields very high costs of 

loading, transporting and unloading biomass, which consequentially limits its economic 

transportation distance1. Brower [9] pointed out that moving biomass more than 50 

miles to a conversion facility severely impacts profits. Due to this limited coverage 

radius, production capacities of the biorefineries are usually low. This restrains the 

biorefineries benefiting from economies of scale, and the unit cost of biomass keeps 

high. In order to alleviate this problem Idaho National Laboratory proposed a biomass 

delivery system [38]. This system relies on preprocessing biomass prior to transporting. 

Densified biomass has physical characteristics which are similar to corn, soybean and 

other grains; therefore, it is easy to load/unload and transport. Handling and 

transportation costs for densified biomass are smaller than those for unprocessed 

biomass; thus, long hauls become an option. Hess et al. [38] reported that depending on 

the amount and distance traveled, rail or truck can be used to deliver densified biomass 

to a biorefinery. As a result, large-capacity biorefineries can get shipments not only from 

local suppliers, but from suppliers located further away. 

Large-capacity biorefineries require the development of a robust and integrated logistics 

system where the densified biomass is shipped via different modes of transportation 

such as truck, rail and barge. In case of unprocessed biomass, truck is considered as the 

only mode of transportation to ship biomass to biorefineries. Using rail or barge instead, 
                                                           
1
 Economic transportation distance is the distance below which truck is considered as an economic mode of 

transportation. 
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not only reduces cost, but also alleviates congestion in the highways and as a result 

improves safety. Therefore, there is a need to establish intermodal hubs in a biofuel 

supply chain network where two or more transportation modes meet, such as rail ramps, 

in-land ports, sea ports, etc. Locating an intermodal hub close to the biorefinery allows 

it to use an economical transportation mode to replenish inventories. For example, the 

only biorefinery in Mississippi is the Bunge-Ergon located in Vicksburg, right on the 

Mississippi River at the port of Vicksburg, MS.  KiOR Inc., a company of next-generation 

renewable fuel built its first plant near the Port of Columbus, MS. KiOR already 

announced to invest in building more biorefineries in Mississippi in the coming years. 

Transportation infrastructures, particularly those bearing intermodal traffic, may be 

vulnerable to various disruption risks, such as natural disasters ([53], [77] e.g., 2005 

Hurricane Katrina, 2008 China and 2009 Haiti Earthquakes) and human-caused disasters 

([54], [58] e.g., 2003 U.S. Northeast blackout, 2010 Gulf of Mexico Oil Spill). 

Furthermore, some areas are recognized as disaster prone areas. For instance, Figure 

1(a) shows that in total 39 different storms affected North Carolina between 2000-2008 

[67]. Hurricanes in North Carolina history are responsible for over $11 billion damage 

loss and almost 1,000 total fatalities. Similarly, the Mississippi river and its tributaries 

have flooded on numerous occasions in the past [72]. Hence, proper redundancy needs 

to be deployed among the biofuel supply chain to enhance the system reliability against 

infrastructure disruptions. This indicates that there is a need to develop a modeling 

framework for reliable design of a biofuel supply chain network. Such a design shall not 

only efficiently transport biomass under the normal Scenario (when every intermodal 

hub is functioning normally), but also hedge against possible losses due to unexpected 

infrastructure disruptions. 

 
(a)                                                                            (b) 
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Figure 1: Figure shows (a) total storms affecting North Carolina between 1851-2012 [67], and (b) 

contiguous U.S. drought area (in %) [73] 

Literature Review 
A major stream of research within the biofuel supply chain literature is to identify the 

best modes of transportation so as to minimize the transportation cost. To achieve this 

goal, a number of studies (e.g., [45], [50], [63]) analyzed the cost effectiveness of 

different modes of transportation to deliver biomass to biorefineries. Early studies 

mainly focus on supply chain decisions at operation level. Later studies further 

integrated both strategic planning and tactical decisions into the design of biomass 

supply chain networks in order to deliver biomass at a more competitive price to the 

end users. Work by [81], [27], [28], [39], [2], [5] and [79] analyze plant location and 

transportation issues in biofuel supply chain networks under a deterministic setting. 

These papers consider perfectly reliable facilities and known demand. Chen and Fan [12] 

and Kim et al., [44] extended those formulations by providing stochastic models that can 

be used to generate reliable solutions for the design and management of a biofuel 

supply chain network. Additionally, Gebreslassie et al. [32] incorporated financial risk in 

a hydrocarbon biorefinery supply chain system. All these models assume that supply 

chain infrastructure is always functioning perfectly and thus they fail to address 

unexpected transportation hub disruptions observed in reality [19], [58]. 

In the context of general network design, researchers have become increasingly 

interested in the effect of facility disruptions. Daskin [22, 23] was the first to consider 

facility unavailability in a maximal covering location problem. Drezner [26] has extended 

this work to reliable location design in a $p$-median problem. Snyder and Daskin [66] 

proposed an integer programming model for the stochastic fixed charge $p$-median 

location problem where the authors assumed that the facility disruptions occur 

independently and with an identical probability. Cui et al. [20] further extended this 

work to cases with site-dependent disruption probabilities by creating both discrete and 

continuous models. The continuous model has been generalized by Li and Ouyang [47] 

to incorporate spatially correlated disruption patters. Shen et al. [64] proposed a two-

stage stochastic program and a nonlinear integer program for problems where the open 

facilities fail at a certain probability. The authors proposed a 4-approximation algorithm 

and several heuristic approaches to produce near-optimal solutions in a reasonable 

amount of time. Most recently, Li et al. [46] provided nonlinear integer programming 
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models for a reliable $p$-median problem and a reliable uncapacitated fixed-charge 

location problem under disruption correlations. By using the rate of return on 

fortification investment, the authors also provided an alternative to assess the 

effectiveness of the design solutions. 

Similar to the literature on facility locations discussed above, biofuel supply 

infrastructure is also impacted by various adversary incidents, such as water scarcity, 

flooding, routine maintenance, or adverse weather condition [62]. However, there are 

very few studies that addressed the impact of biorefinery disruptions in a biofuel supply 

chain network. Li et al. [48] developed a discrete and a continuous location model for a 

reliable bio-ethanol supply chain network. The authors showed the impact of disruption 

probabilities on optimal refinery deployment decisions. Wang and Ouyang [78] 

proposed a game-theoretical based continuous approximation model to locate 

biorefineries under spatial competition and facility disruption risks. However, these 

studies only considered failure risks at biorefineries, and little has been done on 

disruptions at intermediate transportation hubs that can significantly impact this supply 

chain system. 

The biofuel supply chain system from biomass production to biorefineries can be viewed 

as a hub-and-spoke transportation network. Other industries, such as, package delivery 

[65], telecommunication [43], and airline transportation [4], [10], [17] also used hub-

and-spoke to design their distribution networks. A brief overview of the hub location 

problems and solution methodologies can be found from a recent study of SteadieSeifi 

et al. [68]. Recent studies focus on extending the classical single and multiple allocation 

hub location problems by incorporation several extensions in the modeling framework. 

These extensions attempt to determine the impact of congestion [10, 29, 30], nonlinear 

economies of scale [24], and presence of dynamicity in the hub location problems [14]. 

The existing literature focuses not only on modeling the hub location problem, but also 

on developing effective solution algorithms. Camargo et al. [24, 10] present a 

customized Benders decomposition algorithm to solve large instances of the multiple 

allocation hub-and-spoke network models in a reasonable amount of time. Contreras et 

al. develop a Benders decomposition algorithm and integrate it with reduction tests to 

solve the uncapacitated [16] and capacitated versions [15] of the hub location problem. 

The authors further extended these studies to develop a Monte-Carlo simulation-based 

algorithm that integrates a sample average approximation scheme with a Benders 
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decomposition algorithm to solve an uncapacitated hub location problem under 

uncertainty [13]. Elhedhli and Hu [29] and Elhedhli and Wu [30] used Lagrangian 

relaxation heuristics to solve a hub-and-spoke network design problem with congestion. 

Recently, a Lagrangian relaxation technique coupled with variable fixing and a Branch-

and-Bound scheme is used to solve a dynamic hub location problem [14] and a reliable 

hub-and-spoke network design problem [3]. Other techniques used to solve hub 

location problems are dual-ascent technique [11], simulated annealing [42] and genetic 

algorithm [21]. 

All these studies assume that transportation hubs are always functioning and never fail, 

which however cannot adequately describe real-world systems that involve various 

uncertainties from the supply side. A few studies focused on managing and rescheduling 

rail and port operations during different disrupted scenarios such as equipment and 

operational failure and physical damage to the terminal berths [41], [61]. Peng et al. [57] 

propose a system dynamics approach to analyze the behaviors of disrupted disaster 

relief supply chain by simulating the uncertainties associated with predicting post-

seismic road network and delayed information. Kim and O'Kelly [43] proposed a single 

and multiple allocation reliable p-hub location model. In the model, each arc and and 

each hub is assigned a reliability factor. The authors derived an optimal network 

structure that maximizes network performance without considering backup hubs and 

alternative routes. An et al. [3] proposed a reliable single and multiple allocation hub-

and-spoke network design problems where disruptions at hubs and the resulting hub 

unavailability can be mitigated by backup hubs and alternative routes. Different from 

the literature, the model presents in this paper considers the impact of intermodal hub 

failures on supply chain design context and provided a real life example for the densified 

biomass supply chain network. Furthermore, we estimate the disruption probability of 

intermodal hubs using a probabilistic model. We observed that previous studies assume 

a given disruption probability for each facility and seldom validate this value with real-

world disaster mechanisms [66], [20], [47], [48]. Most recently, Huang and Pang [40] 

developed a mechanism to calculate disruption probability of a biorefinery which is 

prone to seismic hazard. In this study, we extend this concept and propose a 

methodology to calculate the disruption probabilities (caused by natural disasters) 

based on the real world data. The aim is to better estimate the disruption probabilities 

for the intermodal hubs.  
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 Methodology 
The network design problem consists of locating a set of intermodal hubs and 

biorefineries among candidate locations and determining the routes of biomass flows 

from its origin (harvesting sites) to destination (biorefineries). The design shall minimize 

the total set-up cost and the expected long run transportation cost across all hub 

disruption scenarios. We assume that the intermodal hubs are subject to site-

dependent probabilistic disruptions. Figure 2 presents the structure of the biofuel 

logistic network consisting of biomass suppliers, potential locations for intermodal hubs 

(rail ramps or ports) and biorefineries. 

Feedstock Suppliers
(i)

Intermodal Hubs
(j)

Biorefineries
(k)

Truck

Rail

Barge

 

Figure 2: An example of intermodal supply chain network 

We present two model formulations for the biofuel logistics network design problem, 

i.e., a basic hub-and-spoke model [HUB-B] that assumes that every hub is always 

functioning perfectly and a reliable hub-and-spoke model [HUB-R] that considers 

possible hub disruptions instead. The notation is summarized in Table 1. We will first 

introduce the basic model [HUB-B]. 

Consider a logistic network ( , )G N A , where N  is the set of nodes and A  is the set of 

arcs (shown in Figure 2). Set N  consists of the set of harvesting sites I , the set of 

candidate intermodal hub locations J  and the set of candidate biorefinery locations K   

(Let, H J K  ). Each site i I  produces is  unit of densified biomass (we assume that 

biomass is densified right at the harvesting sites), and the total biofuel production in this 
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system is set to be no less than d . Locating an intermodal hub of capacity level l L  at 

each location j J  costs a fixed set-up cost 
lj . Similarly, locating a biorefinery of 

capacity l L  at each location k K  costs a fixed set-up cost lk . Each shipments 

from harvesting sites are consolidated at an intermodal hub in J  before being delivered 

to a biorefinery in K . We assume that every biorefinery in K  is co-located with an 

intermodal hub with a sufficiently large capacity, and the transportation expense 

between the refinery and its co-located intermodal hub is negligible. The set of arcs A  is 

partitioned into three disjoint subsets, i.e., 1 2 3A A A A   , where 1A  represents the 

set of arcs joining harvesting sites I  with intermodal hubs J , 2A  represents the set of 

arcs between intermodal hubs J  and biorefinery K , and finally 3A  represents the set 

of arcs that directly connect from harvesting sites I  to biorefinery K . Each arc 

1( , )i j A  carries local collection low-volume traffic between a harvesting site and an 

intermodal hub that are usually spaced by a small distance (e.g., on the order of 10-20 

miles). Therefore, trucks are preferable on 1( , )i j A  and its unit-volume traffic cost is 

specified as the link length of 
ijc . An inter-hub arc 2( , )j k A  usually carries large-

volume long-haul traffic and uses either rail or barge as their major transportation mode. 

We represent 
jkc  as a unit transportation cost along arc 2( , )j k A . Therefore, a unit 

flow along an origin-destination route {( , ),( , )}i j j k  costs 
ijk ij jkc c c  . Furthermore, 

we allow biomass to be shipped by trucks along a direct arc 3( , )i k A  from harvesting 

site i I  to biorefinery k K , which incurs a unit transportation cost ikc . Since trucking 

usually has a higher unit cost than larger-volume rail and waterway modes, cost ikc  is 

likely to be much higher than regular cost ijkc , and thus the long-haul trucking mode is 

mostly used only in emergency. Since densified biomass is usually transported in cargo 

containers between intermodal hubs, in addition to unit transportation cost we consider 

that along each inter-hub arc 2( , )j k A , sending each container with a capacity of cap

jkv  

incurs a fixed cost jk . This fixed cost represents the costs associated with loading and 

unloading a single railcar. We introduce the following location and allocation decision 

variables in our model. 

The primary decision variables ,: { }lj l L j J KY     determine the size and location to open 

intermodal hubs and biorefineries, i.e., 
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1    if an intermodal hub of size  is opened at location 

{
0    otherwise;                                                                

lj

l j
Y   

 
1    if a biorefinery of size  is opened at location 

{
0    otherwise;                                                         

lk

l k
Y   

The second set of decision variables 
,: { }jk j J k KZ    decides the number of container 

flow between each pair of hubs. The remaining decisions are how to route the biomass 

flows from its origin to destination. Let 
( , ): {X }lk l k A  denote the flow of biomass along 

each link ( , )l k A  in this network. With this, we can formulate the basic model [HUB-B] 

as follows, 

( ) , ,

[HUB-B]  Minimize  lk lk lj lj jk jk

lk A l L j H j J k K

c X Y Z
    

      

Subject to                              

          
i i

ij ik i

j J k K

X X s i I
 

                                                                             (1) 

  
k k

jk

k K j I J

X d
  

                                                                                                  (2) 

  0        
j j

ij jk

i I k K

X X j J
 

                  (3) 

  0        
j

cap

ij lk lj

i I l L

X c Y j J
 

                                                      (4) 

  0        
k k

cap

jk lk lk

j I J l L

X c Y k K
  

                                                                 (5) 

  0        ,cap

jk jk jkv Z X j J k K                                                                     (6) 

  1        lj

l L

Y j H


                                                                                           (7) 

          ( , )lkX l k A                                                                                   (8) 
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           ljY j H                                                                                             (9) 

          ,jkZ j J k K                                                                              (10) 

Table 1: Summary of mathematical notations 

Notation Explanation 

Sets  

I  set of harvesting sites (farms) 

J  set of intermodal hubs 

K  set of biorefineries 

L  set of intermodal hub/biorefinery capacities 

iJ  set of intermodal hubs connected to harvesting sites i , i I   

jI  set of harvesting sites connected to intermodal hubs j , j J   

jK  set of biorefineries connected to intermodal hubs j , j J   

kJ  set of intermodal hubs connected to biorefineries k , k K   

iK  set of biorefineries directly connected to harvesting sites i  via the emergency 

transportation service, i I   

kI  set of harvesting sites directly connected to biorefineries k  via the emergency 

transportation service, k K   

Parameters  

is  amount of biomass available at site i I  

d  minimum total amount of biomass to be processed 

cap

jkv  maximum capacity of the cargo container transported along arc 2( , )j k A  

lkc  unit flow cost along arc ( , )l k A  

  unit penalty cost for unsatisfied demand 

lj  fixed cost to open an intermodal hub of capacity l L  at location j , j J   

lk  fixed cost to open a biorefinery of capacity l L  at location k , k K   

jk  fixed cost of a cargo container for transporting biomass along the arc 2( , )j k A  

cap

ljc  acquirable capacity of a hub of capacity level l  at location j , ,l L j H    

jq  failure probability of hub j H  

0   penalty coefficient that reflects the risk aversion degree. The system is risk 

neutral if 1   
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The first term of the objective function is the total variable transportation cost, the 

second term is the total set-up cost of opening intermodal hubs and biorefineries and 

the third term is the fixed cost of sending cargo containers between the intermodal 

hubs and biorefineries. Constraints (1) indicate that the amount of biomass shipped 

from a harvesting site i I  is limited by its availability. Constraints (2) set the minimum 

amount of biomass to be routed through the logistics network. Constraints (3) enforces 

flow-conservation at intermodal hubs j J . Constraints (4) indicate that the total 

amount of biomass shipped through an intermodal hub j J  is limited by the hub 

capacity cap

ljc , ,l L j J   . Similarly, Constraints (5) indicate that the total amount of 

biomass shipped to a biorefinery is limited by the refinery capacity cap

lkc , ,l L k K   . 

Constraints (6) count the number of containers needed for shipping biomass on each arc. 

Constraints  (7) indicate that at most one intermodal hub/biorefinery of capacity l L  is 

operating in a given location j H . Finally, constraints (8) are the standard non-

negativity constraints, (9) are the binary constraints, and (10) are the integrality 

constraints. 

To further incorporate intermodal hub disruptions observed in the real world, we will 

extend the basic model [HUB-B] to a reliable model [HUB-R] that hedges against 

disruption impacts by using back-up services. We assume that each hub in j H  

disrupts independently. The corresponding site-dependent probability is 
jq . When 

either hub along route (( , ),( , ))i j j k  disrupts, this route is no longer operating, and we 

assume the traffic is detoured to the highway arc 3( , )i k A , which now serves as an 

emergency carrier. Since an emergency service usually costs much higher than a 

regularly scheduled service and may incur other risks to normal system operations, we 

consider that the unit emergency transportation cost is   times as much as the 

regularized cost ikc , where the risk coefficient 1   and 1   denotes the risk neutral 

case. We further relax the minimum total biofuel production requirement and instead 

impose a penalty cost   per unit shortage of biomass. This penalty   can be also 

interpreted as a profit threshold such that if unit biomass transportation cost exceeds 

this threshold, producing biofuel will be no longer profitable and thus there is no point 

of shipping biomass at this transportation cost. To capture the hub disruption risks and 

biomass shortage penalty, we introduce additional decision variable as follows, 
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 
, ,: {X }ijk i I j J k K   flow from i  to k  via intermodal hub j  

 : { }U total amount of unsatisfied demand 

Then we adapt [HUB-B] to the following mixed integer linear programming (MILP) 

formulation for our reliable intermodal hub and spoke problem: 

, , , ,

,

[HUB-R]  Minimize  (1 )(1 )

( )

j i j

i k

lj lj jk jk ijk j k ijk

l L j H j J k K i I j J k K

ik ik j k j k ijk

i I k K j J J

Y Z c q q X

c X q q q q X U



 

       

    

    

 
     

 

  

 
 

Subject to 

,

        
i i i

ijk ik i

j J k K k K

X X s i I
  

                                                                  (11) 

  
,k k j

ik ijk

k K i I j J i I

X X U d
   

 
   

  
                                                                     (12)

 
,

0        
j j

cap

ijk lj lj

i I k K l L

X c Y j J
  

                                                    (13) 

,

0        
k j k

cap

ik ijk lk lk

i I i I j J l L

X X c Y k K
   

                                                 (14) 

0        ,
j

cap

jk jk ijk

i I

v Z X j J k K


                                                              (15) 

  1        lj

l L

Y j H


                                                                                         (16) 

        , ,ijk i jX i I j J k K                                                                   (17) 

          ,ik iX i I k K                                                                               (18) 

U                                                                                                               (19) 

        ,ljY l L j H                                                                                  (20) 
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          ,jk jZ j J k K                                                                             (21) 

 

In [HUB-R], the objective function minimizes the total expected system cost, including 

the expected transportation cost across both normal and disruptive scenarios and the 

investment of opening hubs and using inter-hub arcs. More specifically, the first and 

second terms represent respectively the total set-up cost of establishing the intermodal 

hubs and biorefineries and the fixed cost of transporting cargo containers between the 

intermodal hubs. The third term is the regular transportation cost which is weighted by 

(1 )(1 )j kq q  , the probability that both hubs operate normally along each route 

( , , )i j k . When either or both the intermodal hub i  and biorefinery k  disrupt, which 

occurs at a probability of ( )j k j kq q q q  , flow 
ijkX  originally assigned to route ( , , )i j k  

will be diverted to direct route ( , )i k  at a higher variable cost ikc , while route ( , )i k  in 

addition carries the planned regular flow ikX  at variable cost ikc . This is reflected by the 

fourth and fifth terms of the objective function. The sixth term is the penalty cost for 

biomass supply shortage. 

Again, constraints (11) indicate that the amount of biomass shipped from a harvesting 

site i I  is limited by its availability. Constraints (12) indicate that the total demand for 

biomass will be fulfilled either through the hub-and-spoke distribution network or 

through emergency shipments. Constraints (13) indicate that the total amount of 

biomass shipped through intermodal hub j J  is limited by the hub capacity cap

ljc , 

,l L j J   . Similarly, constraints (14) indicate that the total amount of biomass 

shipped to a biorefinery is limited by the refinery capacity cap

lkc , ,l L k K   . 

Constraints (15) set a limit on the amount of biomass to be routed on the arcs 

2( , )j k A . Constraints (16) indicate that at most one intermodal hub/biorefinery of 

capacity l L  is operating in a given location j H . Finally constraints (17) to (19) are 

the standard non-negativity constraints, (20) are the binary constraints, and (21) are the 

integrality constraints. 
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Visualization Decision-Support Tool 
On the basis of the proposed models, we developed a visualization decision-support tool 

consisting of two parts: a web-based interface and a problem solution server. The web-

based interface is coded using HTML, JavaScript and PHP and published on the internet. 

The web-based interface is connected to a biofuel supply chain problem solver which is 

coded using C++, CPLEX and MySQL and running on the server used by the research 

team.  

Figure 3 is the initial user interface when users firstly open the webpage, showing data 

of our base case example in default. Initially, the webpage shows all the locations of 

feedstock suppliers and candidate locations of intermodal hubs and biorefineries. The 

data of locations are stored in MySQL database which is running on our server. The 

users are able to input their own problem data and change model parameters though 

the left side panel of the user interface, as shown in Figure 4. 

By using the decision-support tool, we are able to identify under what conditions 

locating a biofuel plant near an intermodal facility is advisable; and what are the 

benefits/costs of such a decision. Furthermore, we can clearly and visually observe how 

changes on different conditions impact the biofuel supply chain network. 

 

Figure 3 Main user interface 
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Figure 4 Interface of changing model parameters 

Through the internet, the webpage transmits input data of biofuel supply chain problem 

parameters to the problem solver. When the solver receives the data, it calls CPLEX to 

solve the optimization problem. Then the solver connects to MySQL database which 

stores all the location information and we are able to find the location information of 

selected intermodal hubs and biorefineries. When the server has the information of 

selected intermodal hubs and biorefineries, it transmits the result information to the 

webpage and display all the selected location on the map of the user interface. The data 

flow between various system components are demonstrated in Figure 5. 
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Figure 5 data flow between various system components 

 

Research Findings  
In this section, we use data and map of the southeast region of the U.S as a case study 

of our visualization decision-support tool. We will focus on how the risk impacts 

biorefinery locations in Mississippi. To understand the impact of intermodal hub 

disruption on biofuel supply chain network, we conduct three different experiments: (a) 

Demand increases/decreases; (b) Increases of variable truck cost (to reflect an increase 

in gas price since it has a great impact on this variable cost); (c) Increases of fixed truck 

costs (to reflect the increase in the salary of drivers). 
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Figure 6: Feedstock suppliers locations and potential locations of intermodal hubs and 

biorefineries in the southeast region of the U.S 

Scenario 1: Basic input 
We use this Scenario as the benchmark. Using basic input parameters as shown in Figure 7, after 

calculation, we have results of biorefinary locations showed in Figure 8. 
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Figure 7: Basic input parameters 
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Figure 8: Chosen locations of biorefineries 

and intermodal hubs 

We can find that there are 2 biorefineries and 1 intermodal hub in Mississippi. The first 

biorefinery is in Heidelberg, MS with capacity 1.24 MTY and the second is in Pascagoula, 

MS with capacity 4.65 MTY. The total supply chain cost is 1.10955e+009 dollars. For the 

whole supply chain network in the southeast region of the U.S, 29 intermodal hubs are 

selected and 5 biorefineries are selected. The total number of transported containers is 

44,132. The total amount of biomass shipped through intermodal hub is 6.6822e+006 

tons. The total amount of biomass shipped through truck (direct shipment) is 

1.71926e+007 tons. The total amount of demand shortage is 2.54362e+006 tons. 



23 
 

Scenario 2: Total demand decreases/increases  

(1) Total demand decreases from 26,418,420 tons to 16,418,420 tons. 

 

 
Figure 9: Chosen locations of biorefineries and intermodal hubs 

We can find that there are 2 biorefineries and 1 intermodal hub in Mississippi for this 

scenario. The first biorefinery is in Heidelberg, MS with capacity 0.62 MTY and the 

second is in Blakely, MS with capacity 4.65 MTY. The total supply chain cost is 

5.60812e+008 dollars.  
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Compared with Scenario 1, due to the decrease of total demand, the locations of 

biorefinery and intermodal hub are changed and the capacity scale decreases (which 

could decrease the fixed cost of biorefineries). Both biorefineries use rail in this Scenario 

while in Scenario 1 one uses rail and the other uses barge. The reason is that because 

the total demand decreased, rail can transport all needed biomass and it is cheaper than 

barge. Therefore, choosing biorefineries that use rail is more cost-efficient. Hence, the 

total system cost of this Scenario is less than Scenario 1. Also, the number of total 

selected intermodal hubs and biorefineries is less than in Scenario 1. 

(2) Total demand increases from 26418420 to 36418420 
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Figure 10: Chosen locations of biorefineries and intermodal hubs 

For this scenario, there are 3 biorefineries and 1 intermodal hub in Mississippi. The first 

biorefinery is in Heidelberg, MS with capacity 1.24 MTY, the second is in Blakely, MS 

with capacity 4.65 MTY, and the third is in Pascagoula, MS. The total supply chain cost is 

1.91618e+009 dollars.  

Compared with Scenario 1, due to the increase of total demand, the number of selected 

biorefineries increases in Mississippi. Also, the capacity scale increases as well to meet 

the increased demand.  

Scenario 3. Increases of Variable Truck Cost  

In this scenario, we increased normal variable cost of truck from 0.091 dollars per mile 

per ton to 0.131 dollars per mile per ton.  
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Figure 11: Chosen locations of biorefineries and intermodal hubs 

According to the results, we find that the number of selected intermodal hubs increases. 

For the whole supply chain network in the southeast region of the U.S, there are 37 

selected intermodal hubs, an increase of 27.6% compared with Scenario 1. In Mississippi, 

there are 2 selected biorefineries and 2 selected intermodal hubs while in Scenario 1, 

there is only 1 selected intermodal hub. Because the cost of truck increases, it is better 
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to have more intermodal hubs to maintain a higher inventory level.  Although the truck 

cost increases,the total system cost is 1.10602e+009 dollars and maintains at the sam e 

level with a small decrease of 0.3%. 

Scenario 4: Increase of Fixed Truck Cost 

In this scenario, we increase normal fixed cost of truck from 5.882 dollars per mile per 

ton to 6.882 dollars per mile per ton.  

 

 
Figure 12: Chosen locations of biorefineries and intermodal hubs 
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Compared with Scenario 1, due to the increase of fixed truck cost, the number of 

selected biorefineries increases while the number of selected intermodal hubs 

decreases. In Mississippi, there are 3 selected biorefineries and 1 selected intermodal 

hub. The fixed truck cost is the fixed cost sending cargo containers between the 

intermodal hubs and biorefineries. Thus, the decrease of the number of intermodal 

hubs will decrease the total fixed cost of truck to deal with the impact of increased fixed 

cost of truck. In this scenario, the total supply chain system cost is 1.10359e+009 dollars, 

which is similar to Scenario 1 with a minor decrease of 0.5%. The number of selected 

intermodal hubs is 34.5% less than it in Scenario 1. 

Conclusions 
This research is to analyze the impact of intermodal disruption risks to the design and 

management of a biofuel supply chain network, and to design a decision-support tool 

that assist identifying biorefinery locations to ensure a cost-efficient and reliable supply 

chain. A mixed integer linear programming model [HUB-R] is developed to determine 

the optimal intermodal hub locations and shipment routes for delivering biomass in 

order to optimize system’s performance under normal conditions but also hedge against 

losses when intermodal hubs are disrupted because of natural disasters (e.g., flooding, 

hurricane, draught). 

We have designed and developed a visualization decision-support tool combining a 

web-based interface displaying the original candidate and chosen biorefinery locations, 

and a problem solver running in the server solving reliable intermodal hub location 

problems. Computational results showed that our visualization decision-support tool 

can be used to solve realistic instances of large size problems and clearly and intuitively 

display the results of supply chain network. Furthermore, decision makers can solve 

specific supply chain problems by inputting their own data of feedstock suppliers, 

intermodal hubs and biorefineries through the web-based interface and obtain 

visualized results for analysis.  

By using the data and map of the southeast region of the U.S, we conducted thorough 

computational experiments to test our visualizaton decision-support tool and  draw 

managerial insights. Our computational experiments revealed some insightful results 

about the impact of intermodal disruption risks on a biofuel supply chain network. 

Based on the results, the model selects to use intermodal hubs located in areas with low 
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disruption probabilities. Moreover, when the total demand changes, it greatly impacts 

the number and locations of selected biorefineries. When the normal variable truck cost 

or fixed truck cost increases/decreases, the number and locations of selected 

intermodal hubs are also influenced to a large exent. The sensitivity analyses further 

reveals how different parameters affect the location and performance of the biofuel 

supply chain network, and the developed decision-tool enables decision makers to 

capture such sensitivities and choose optimal plans for the design of biofuel supply 

chain. 
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